Abstract

Diamond films were deposited on Si substrates by Electron-Assisted Chemical Vapor Deposition (EACVD) using various methane concentrations below 8.1%. It was found that the deposited films were strongly (110)-oriented. This seemed to arise from a high nucleation density of diamond caused by the initial deposition of an amorphous carbon film. A comparison of the graphite etching rate between EACVD and Microwave Plasma CVD (MPCVD) under the standard growth conditions showed that EACVD was able to etch graphite about five times faster than MPCVD. Hence, it was concluded that the differences in the growth rate and morphology between EACVD and MPCVD arise from the different graphite etching rates as well as different chemical species in the reaction gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call