Abstract

AbstractFilms and nanostructures of β‐Ga2O3 were successfully grown by atmospheric‐pressure CVD (AP‐CVD) using metal Ga and H2O as source materials. It was confirmed that highly (‐201) oriented polycrystalline β‐Ga2O3 films can be obtained on c ‐plane sapphire (c ‐Al2O3) substrates by optimizing growth temperature (Tg) and source supply ratio of H2O to Ga. The optical gap energy of the β‐Ga2O3 film with a relatively flat surface was estimated to be ∼4.9 eV. Photoluminescence (PL) measurements for the β‐Ga2O3 films revealed the existence of at least three emission bands with their peaks at ∼370 nm, ∼440 nm and ∼520 nm. Various shapes of quasi 1D nanostructures, such as nanowires (NWs), nanorods (NRs), tapered NRs and nanobelts (NBs), were obtained on the c ‐Al2O3 substrates coated with the Au films by utilizing vapour‐liquid‐solid (VLS) growth mechanism. The diversity of the quasi 1D nanostructures is probably due to the contribution of vapour‐solid (VS) growth mechanism and/or the coalescence between the neighbouring Au metal particles before initiating the NW (or NR) growth. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.