Abstract

The present work discusses about the synthesis of alumina thin films, which have applications in current and next-generation solid-state electronic devices due to their attractive properties. Alumina thin films were synthesized by pulsed laser deposition at different oxygen pressures and substrate temperatures. The dependence of substrate temperature, oxygen pressure, and the deposition time on the properties of the films has been observed by growing three series of alumina thin films on Si (100). The first films are synthesized using substrate temperatures ranging from room temperature to 780 °C at 0.01 mbar of O2. The second series was realized at a fixed substrate temperature of 760 °C and varied oxygen pressure (from 0.005 to 0.05 mbar). The third set of series was elaborated at different deposition times (from 15 to 60 min) while the oxygen pressure and the substrate temperature were fixed at 0.01 mbar and 760 °C, respectively. The films were characterized using X-ray diffractometer (XRD) for structural analysis, a scanning electron microscope for morphological analysis, a nano-indenter for mechanical analysis (hardness and Young’s modulus), and Rutherford backscattering spectroscopy for thickness and stoichiometry measurements. Using optical emission spectroscopy, plasma diagnostic was carried out both in the vacuum and in the presence of oxygen with a pressure ranging from 0.01 to 0.05 mbar. Several neutral, ionic, and molecular species were identified such as Al, Al+, and Al++ in vacuum and in oxygen ambiance, O and AlO molecular bands in oxygen-ambient atmosphere. The spatiotemporal evolution of the most relevant species was achieved and their velocities were estimated. The highest amount of crystallized alumina in γ-phase was found in the films elaborated under 0.01 mbar of O2, at a substrate temperature of 780 °C, and a deposition time of 60 min.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.