Abstract

Few researchers examined different red light amounts added in white light-emitting diodes (LEDs) with varied daily light integrals (DLIs) for hydroponic lettuce (Lactuca sativa L.). In this study, effects of DLI and LED light quality (LQ) on growth, nutritional quality, and energy use efficiency of hydroponic lettuce were investigated in a plant factory with artificial lighting (PFAL). Hydroponic lettuce plants (cv. Ziwei) were grown for 20 days under 20 combinations of five levels of DLIs at 5.04, 7.56, 10.08, 12.60, and 15.12 mol·m−2·d−1 and four LQs: two kinds of white LEDs with red to blue ratio (R:B ratio) of 0.9 and 1.8, and two white LEDs plus red chips with R:B ratio of 2.7 and 3.6, respectively. Results showed that leaf and root weights and power consumption based on fresh and dry weights increased linearly with increasing DLI, and light and electrical energy use efficiency (LUE and EUE) decreased linearly as DLI increased. However, no statistically significant differences were found in leaf fresh and dry weights and nitrate and vitamin C contents between DLI at 12.60 and 15.12 mol·m−2·d−1. Also, no effects of LQ on leaf dry weight of hydroponic lettuce were observed at a DLI of 5.04 mol·m−2·d−1. White plus red LEDs with an R:B ratio of 2.7 resulted in higher leaf fresh weight than the two white LEDs. LUE increased by more than 20% when red light fraction increased from 24.2% to 48.6%. In summary, white plus red LEDs with an R:B ratio of 2.7 at DLI at 12.60 mol·m−2·d−1 were recommended for commercial hydroponic lettuce (cv. Ziwei) production in PFALs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call