Abstract

Seedlings of Eucalyptus regnans (mountain ash) grow poorly in undried forest soil, where they develop purple coloration in the foliage, but their growth is markedly improved when forest soil has been air dried. Whether this growth promotion is purely due to improved nutrient status of the soil, as a result of air drying, was investigated. In several pot experiments, E. regnans seedlings were grown (i) in air-dried and undried forest soil with addition of different levels of complete fertiliser, (ii) in air-dried or undried soil diluted to different extents with sand, or (iii) in undried soil mixed with different amounts of air-dried soil. Seedling dry weight, P content and incidence of ectomycorrhizal root tips were determined. In all experiments, the dry weights of seedlings were 3–6 times greater in 100% air-dried soil than in 100% undried soil. Fertiliser application resulted in a significant increase in dry weight of seedlings in both air-dried and undried soil, but the dry weights in air-dried soil were always significantly greater than those in undried soil at the same level of fertiliser application. Even at the highest level of fertiliser application, the growth difference between seedlings in air-dried and undried soil remained. When air-dried soil was diluted with sand, there was a significant reduction in seedling dry weight only when soil was diluted to 20% or less (air-dried soil:total mix). Conversly, when air-dried soil was mixed with undried soil, there was a proportional decrease in seedling dry weight with increasing amounts of undried soil. In all experiments, the dominant ectomycorrhizal morphotypes in 100% air-dried soil were different from those in undried soil. Fertilisation and dilution of air-dried and undried soil did not result in a reduction in the overall incidence of ectomycorrhizal root tips, although the frequency of occurrence of different ectomycorrhizal morphotypes was affected. It is concluded that the growth difference between seedlings in air-dried and undried forest soils is not due solely to differences in the direct availability of nutrients in the soils, and different ectomycorrhizae may indirectly affect nutrient availability to the plant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call