Abstract

ABSTRACTWater shortages is a major constraint in wheat production in South Africa. It is important therefore to assist irrigated wheat farmers to identify water stress tolerant growth stages in irrigated wheat genotypes. This study evaluated new wheat genotypes for water stress at different growth stages. An 8 (genotypes) × 2 (water treatments) × 3 (growth stages) factorial experiment was laid out in a randomised complete block design with three replicates. The results indicated that plant height was not affected (p > .05) by water stress at tillering and grain filling. Water stress imposed at the tillering stage reduced the number of fertile tillers (p < .05) in susceptible genotypes while at the flowering and grain filling stages all genotypes were tolerant (p > .05). Aboveground biomass was only affected (p < .05) by water stress imposed at the tillering stage. Water stress reduced grain yield on the genotypes where stress was imposed at the tillering stage (p < .05); whereas when stress was imposed at flowering and grain filling the grain yield was not reduced (p > .05). This study provided evidence to suggest that most genotypes were tolerant to water stress at the flowering and grain filling stages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.