Abstract

"Volmer-Weber" island nucleation and step-flow growth model are the classical processes of the conventional epitaxy of films. However, a growth model of van der Waals epitaxy (vdWE) of films is still not very well-documented. Here, we present an example of vdWE of AlN films on multilayer graphene (MLG)/SiC by hydride vapor phase epitaxy at a high temperature of 1100 °C and reveal the orientation relationship of AlN, MLG, and SiC as (0001)[1-100]AlN||(0001)[1-100]MLG||(0001)[11-20]SiC, which suggests that the vdWE heterointerface is not an usual covalent bond and no excessive strain during the growth process owing to the incommensurate in-plane lattices. Remarkably, zigzag cracks are formed because of the anisotropy of strain after the films are cooled down to room temperature, indicating that the growth model of vdWE is different from that of conventional epitaxy. It is a layer-by-layer epitaxy, and a planar substrate without a miscut angle is essential for obtaining single-crystalline films. Additionally, the films can be transferred to foreign substrates by direct mechanical exfoliation without any stressor layer. An ultraviolet photosensor device illustrates an example of III-nitride heterogeneous integration application. Our work demonstrates an excellent step toward the vdWE of varieties of compound films on 2D materials for the applications of transferrable heterogeneous integration in future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call