Abstract
A zinc chlorophyll derivative possessing an oligoethylene glycol ester at the 17-propionate residue was prepared as a model of specific pigments in chlorosomes, such as bacteriochlorophylls-c, d, and e, by chemical modification of naturally occurring chlorophyll-a. The zinc chlorophyll derivative aggregated in aqueous or hexane solutions containing 1% (v/v) ethanol to give red-shifted and broadened Soret/Qy absorption bands with intense circular dichroism signals, indicating the formation of its chlorosome-like J-type self-aggregates. The atomic force microscope images of the self-aggregates prepared in aqueous or hexane solutions showed thin tube-like (ca. 3nm diameter) or thick rod-like aggregates (> 20nm diameter), respectively. After standing these solutions for several days, the nanotubes or nanorods further assembled to give ribbon- or bundle-like aggregates, respectively. The latter transformation (tube to ribbon) was triggered by hydrogen bonding between oligoethylene glycol esters located outside of the tubes via water or ethanol molecules. These dynamic supramolecular transformations may also be useful for revealing the growth process of bacteriochlorophyll self-aggregates in a chlorosome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.