Abstract

Using molecular beam epitaxy, we demonstrate the growth of (In,Ga)N shells emitting in the green spectral range around very thin (35 nm diameter) GaN core nanowires. These GaN nanowires are obtained by self-assembled growth on TiN. We present a qualitative shell growth model accounting for both the three-dimensional nature of the nanostructures as well as the directionality of the atomic fluxes. This model allows us, on the one hand, to optimise the conditions for high and homogeneous In incorporation and, on the other hand, to explain the influence of changes in the growth conditions on the sample morphology and In content. Specifically, the impact of the V/III and In/Ga flux ratios, the rotation speed and the rotation direction are investigated. Notably, with In acting as surfactant, the ternary (In,Ga)N shells are much more homogeneous in thickness along the nanowire length than their binary GaN counterparts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.