Abstract

Zinc (Zn) thin films were prepared by direct current magnetron sputtering as precursors with different deposition times. Zinc oxide (ZnO) nanostructures such as nanowires, nanobelts and nanoblades were then synthesized from the Zn precursors by wet-oxidation process. The microstructures of the Zn precursor and ZnO nanostructures have been studied by scanning electronic microscopy and X-ray diffractometry. The optoelectronic properties were analyzed by photoluminescence measurement. It was found that the Zn precursor film with a porous top layer consisting of well-crystallized Zn grains is an essential for formation of ZnO nanowires. Along with time dependence study and temperature dependence studies, the ZnO nanostructure growth mechanisms during the wet-oxidation process are proposed: water vapor has a major influence on the initial stage, and the final dimensions of the nanostructure are controlled by the vapor–solid process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.