Abstract

It is demonstrated that growing InGaN nanowires in metal-rich conditions on top of GaN nanowires results in a widening of the InGaN section. It is shown that the widening is eased by stacking faults (SFs) formation, revealing facets favorable to In incorporation. It is furthermore put in evidence that partial dislocations terminating SFs efficiently contribute to elastic strain relaxation. Indium accumulation on top of the InGaN section is found to result in an axial growth rate decrease, which has been assigned to increased N–N recombination and subsequent effective nitrogen flux decrease, eventually leading to the formation of InGaN nano-umbrellas/nanoplatelets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.