Abstract
Porous alumina bodies, intended for use as heat-insulating refractory materials, were fabricated by a high-temperature evaporation method and characterized. A series of flux systems was used by adding a third component to Na2O–B2O3 glass in addition to boric acid and sodium carbonate. When SiO2 was added as the third component, the primary alumina particles grew anisotropically, forming a plate-like shape, and the house-of-cards structure was self-organized. The anisotropic growth of alumina platelets was promoted by the solid solution of Si4+ ions in the flux on the α-Al2O3 surface. Furthermore, the bonding between the alumina platelets was strengthened by the high-SiO2-concentration flux. Our typical alumina body had a porosity of 71.5%, a compressive strength of 3.7 MPa, a shrinkage rate of 2.6% when reheated at 1700 °C, and a thermal conductivity of 0.24 W m−1•K−1 at 1000 °C. Thus, the present alumina bodies are expected to find application as high-performance heat-insulating refractory materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.