Abstract

Zinc oxide is widely used in gas sensors, solar cells, and photocatalysts because of its wide bandgap and exciton binding energy of 60 meV in various metal oxides. To use ZnO as a gas sensor, it is necessary to synthesize it with surface defects and a large specific surface area. In this study, hydrothermal synthesis without surfactants was employed to obtain organic-additive-free ZnO. For morphology control, we varied the ratio of the hydroxide ion concentration to the zinc ion concentration. To confirm the growth mechanism of ZnO, we performed X-ray diffraction, scanning electron microscopy, and transmission electron microscopy analyses. Raman spectroscopy and photoluminescence measurements were performed to analyze the surface properties. The Brunauer–Emmett–Teller method and probe stations were used to measure the specific surface area and sensitivity of the gas sensor, respectively. The results confirmed that flower-shaped ZnO is the most suitable gas-sensing material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call