Abstract
Single-wall, double walled or few walled nanotubes (FWNT) are grown by electron cyclotron resonance plasma enhanced chemical vapor deposition (ECR-PECVD) at temperature as low as 600 °C. Most of these structures are isolated and self-oriented perpendicular to the substrate. The growth mechanism observed for single-wall and few walled (less than seven walls) nanotubes is the “base-growth” mode. Their grow kinetics is investigated regarding two parameters namely the growth time and the synthesis temperature. It is shown that nucleation and growth rate is correlated with the number of walls into FWNT. It also provides an evidence of a critical temperature for FWNT synthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica E: Low-dimensional Systems and Nanostructures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.