Abstract

A facile AAO (anodic aluminum oxide) template-assisted vacuum die-casting technique was used to create Sn nanowires and convert them into SnO2 without degrading the wires nanostructure. As a function of time and temperature, the controlled oxidation on the Sn nanowires of two different spatial configurations (100 and 250 nm in diameter) revealed distinct oxidation mechanisms. The 250-SnO2 nanowires exhibits a peculiar crumb-like structure formation over the surface due to the higher level of Sn atom dislocation. Conversely, the sub-100 nm SnO2 nanowires shows a highly crystalline, homogenous, and defect-free surfaces. The optical properties of the sub-100 nm SnO2 nanowires were characterized using UV–Vis spectroscopy. The heat-treated tin oxides nanowires samples at temperatures of 300, 500, and 700 °C for 7 h exhibited optical energy bandgaps of 1.8, 2.6, and 3.3 eV, respectively. The observed variation in bandgap is attributed to the unique phase compositions achieved in each of the heat-treated samples. Moreover, the obtained results showed exceptional structural integrity and optical properties that are inherently interconnected with the diverse phases achieved under precise heat treatment conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call