Abstract

Growth kinetics of cobalt silicide layers formed by ion beam irradiation was investigated at a temperature between room temperature and 100 °C. The CoSi phase was identified by x-ray diffraction of Co/Si samples irradiated with 25 keV argon ions to a dose of 2.0×1015 cm−2. The number of intermixed silicon atoms in the CoSi layers was evaluated as a function of dose, dose rate, and nuclear energy deposition rate at the Co/Si interface for samples irradiated with 40 keV focused silicon ion beams. The growth is shown to be diffusion-limited and attributed to radiation-enhanced diffusion with an activation energy of 0.16 eV. The number of intermixed silicon atoms is approximately proportional to the nuclear energy deposition rate at the initial Co/Si interface, while it is independent of dose rate, which shows that the CoSi phase is formed without contribution of the sample heating caused by irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.