Abstract

The growth kinetics and morphologies of self-assembled monolayers deposited by contact printing 7-octenyltrichlorosilane (OCT) and octadecyltrichlorosilane (OTS) on Si(100) were studied by ellipsometry and atomic force microscopy. We found that, for both OCT and OTS, full monolayers could be obtained at room temperature after printing times of 120-180 s; the printing-based monolayer assembly processes follow apparent Langmuir adsorption kinetics, with the measured film growth rates increasing both with the ambient humidity and with concentration of the ink used to load the stamp. At a dew point of 10 degrees C and an ink concentration (in toluene) of 50 mM, the observed film growth rate constant is 0.05 s(-)(1). When the printing was carried out at a lower ambient humidity (dew points of 1-3 degrees C), the measured rates of assembly were approximately a factor of 2 slower. Increasing the deposition temperature from 25 to 45 degrees C under these conditions increased the film growth rate only slightly. The morphology of the films depends on the identity of the ink. Uniform, high-coverage films could be obtained readily from the eight-carbon chain length adsorbate OCT, provided that the stamp was not overloaded with the ink; for high concentrations outside of the optimal range, the surface presented significant numbers of adsorbed particles ascribed, in part, to siloxane polymers formed by hydrolysis of the ink on the stamp before printing. In marked contrast, for the 18-carbon adsorbate OTS, the printed films always consisted of a mixture of a uniform monolayer plus adsorbed polysiloxane particles. The different film morphologies seen for OCT and OTS are proposed to result from the different transfer efficiencies of the organotrichlorosilane relative to polysiloxane hydrolysis products formed during the printing process. These transfer efficiencies exhibit sensitivities related to the permeation of the poly(dimethylsiloxane) (PDMS) stamp by the silane reagents. Short-chain inks such as OCT evidently permeate the PDMS stamp more deeply than longer-chain inks such as OTS. This difference, and the different diffusion rates of ink vs oligomeric silane hydrolysis products, determines the film morphology obtained by contact printing. The mass transfer dynamics of the process thus yield surface layers derived from varying quantities of siloxane oligomers, which subsequently transfer to the substrate along with unhydrolyzed silane adsorbate during the printing step. The structural evolution of the contact-printed films so obtained is strikingly different from that of SAMs prepared by immersion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.