Abstract

We have previously established a murine flat revertant cell line R1 from an activated H-ras transformant EJ-NIH/3T3 by subjecting it to ethyl methanesulfonate. From the R1 cells, we cloned a mutated gelsolin gene His321 and have shown the inhibitory activity of His321 against EJ-NIH/3T3 tumors. Our present experiments were conducted to find out whether the His321 gene has any effects on untransformed NIH/3T3 fibroblasts. Rhodamine-phalloidin staining revealed that two NIH/3T3 clones expressing His321 (NIH/λ2S-3 and NIH/λ2S-6) form organized actin stress fibers as two clones transfected with the vector alone (NIH/neo-3 and NIH/neo-5). We also found that in a liquid medium, NIH/λ2S-3 and NIH/λ2S-6 grew more slowly than NIH/neo-3 and NIH/neo-5 and that the doubling times of the former were about 10 h slower than those of the latter. To investigate the effects of His321 on the signal transduction pathway necessary for cell growth, we stimulated the cell lines by prostaglandin E1 (PGE1), a platelet-derived growth factor (PDGF), or the epidermal growth factor (EGF). Although stimulation by PGE1 increased intercellular cyclic AMP in R1 cells, it did not do so in NIH/λ2S-3 and NIH/λ2S-6 cells. On the other hand, stimulation by PDGF or EGF induced far less DNA synthesis in NIH/λ2S-3 and NIH/λ2S-6 than in NIH/neo-3 and NIH/neo5. These results suggest that through the effects on the signal transduction pathway of PDGF and/or EGF His321-mutated gelsolin inhibits the growth of NIH/3T3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.