Abstract

Our aim was to study the effects of cucurbitacin glucosides extracted from Citrullus colocynthis leaves on human breast cancer cell growth. Leaves were extracted, resulting in the identification of cucurbitacin B/E glucosides. The cucurbitacin glucoside combination (1:1) inhibited growth of ER + MCF-7 and ER − MDA-MB-231 human breast cancer cell lines. Cell-cycle analysis showed that treatment with isolated cucurbitacin glucoside combination resulted in accumulation of cells at the G 2/M phase of the cell cycle. Treated cells showed rapid reduction in the level of the key protein complex necessary to the regulation of G 2 exit and initiation of mitosis, namely the p34 CDC2/cyclin B1 complex. cucurbitacin glucoside treatment also caused changes in the overall cell morphology from an elongated form to a round-shaped cell, which indicates that cucurbitacin treatment caused impairment of actin filament organization. This profound morphological change might also influence intracellular signaling by molecules such as PKB, resulting in inhibition in the transmission of survival signals. Reduction in PKB phosphorylation and inhibition of survivin, an anti-apoptosis family member, was observed. The treatment caused elevation in p-STAT3 and in p21 WAF, proven to be a STAT3 positive target in absence of survival signals. Cucurbitacin glucoside treatment also induced apoptosis, as measured by Annexin V/propidium iodide staining and by changes in mitochondrial membrane potential (ΔΨ) using a fluorescent dye, JC-1. We suggest that cucurbitacin glucosides exhibit pleiotropic effects on cells, causing both cell cycle arrest and apoptosis. These results suggest that cucurbitacin glucosides might have therapeutic value against breast cancer cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.