Abstract

The altered expression of both p53 and erbB2 is strongly related to the disease status and the outcome of bladder cancers. We examined the antitumor efficacy by the modulation of these genetic alterations with a newly designed dual-gene-expressing adenovirus (Ad-p53/erbB2Rz), which expresses p53 and anti-erbB2 ribozyme simultaneously in human bladder cancer cells. Cell growth inhibition efficacy along with biological responses of this virus was compared with other viral vectors (Ad-p53, which expresses wild-type p53 cDNA, and Ad-erbB2Rz, which expresses anti-erbB2 ribozyme, solely or in combination). Sufficient transgene expression in targeted cells and the altered expression of the targeted genes and their encoded proteins were obtained by each therapeutic vector. Each of the three therapeutic viral vectors inhibited bladder cancer cell growth, and the putative additive antitumor effect was shown by the combination of two of the therapeutic vectors. Furthermore, Ad-p53/erbB2Rz had superior therapeutic efficacy when the same titers of viruses were infected. Nonspecific vector-related toxicity was minimized by reducing the total amount of viral titers by using the dual-gene-expressing adenovirus. Modulation of multiple genetic abnormalities might enhance the therapeutic efficacy, and vector-related toxicity could be minimized when the total amount of viral titers are reduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.