Abstract

<h3>Abstract</h3> The mode of action for most mosquito repellents is unknown. This is primarily due to the difficulty in monitoring how the mosquito olfactory system responds to repellent odors. Here, we used the Q-system of binary expression to enable activity-dependent Ca<sup>2+</sup> imaging in olfactory neurons of the African malaria mosquito <i>Anopheles coluzzii</i>. This system allows neuronal responses to common insect repellents to be directly visualized in living mosquitoes from all olfactory organs including the antenna. The synthetic repellents DEET and IR3535 did not activate Odorant Receptor Co-Receptor (Orco) expressing olfactory receptor neurons (ORNs) at any concentration, while picaridin weakly activated ORNs only at high concentrations. In contrast, natural repellents (<i>i.e</i>. lemongrass oil and eugenol) strongly activated small numbers of ORNs in the mosquito antennae at low concentrations. We determined that DEET, IR3535, and picaridin decrease the response of Orco expressing ORNs when these repellents are physically mixed with activating human-derived odorants. We present evidence that synthetic repellents may primarily exert their olfactory mode of action by decreasing the amount of activating ligand reaching ORNs. These results suggest that synthetic repellents disruptively change the chemical profile of host scent signatures on the skin surface rendering humans invisible to mosquitoes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.