Abstract

To evaluate the impact on the somatotropic axis of endogenous cortisol excess in the absence of primary pituitary disease, we investigated spontaneous 24-h growth hormone (GH) secretion in 12 adult patients with ACTH-independent hypercortisolism. Plasma GH concentration profiles (10-min samples) were analyzed by deconvolution to reconstruct secretion and approximate entropy to quantitate orderliness of the release process. Comparisons were made with a body mass index (BMI)-, age-, and gender-matched control group and an age- and gender-matched lean control group. GH secretion rates did not differ from BMI-matched controls but were twofold lower compared with lean subjects, mainly due to a 2.5-fold attenuation of the mean secretory burst mass (P = 0.001). In hypercortisolemic patients, GH secretion was negatively correlated with BMI (R = -0.55, P = 0.005) but not cortisol secretion. Total serum IGF-I concentrations were similar in the three groups. Approximate entropy (ApEn) was increased in patients with Cushing's syndrome compared with both control groups (vs. BMI-matched, P = 0.04; vs. lean, P = 0.001), denoting more irregular GH secretion patterns. ApEn in patients correlated directly with cortisol secretion (R = 0.77, P = 0.003). Synchrony between cortisol and GH concentration series was analyzed by cross-correlation, cross-ApEn, and copulsatility analyses. Patients showed loss of pattern synchrony compared with BMI-matched controls, but copulsatility was unchanged. We conclude that hyposomatotropism in primary adrenal hypercortisolism is only partly explained (approximately 30%) by increased body weight and that increased GH secretory irregularity and loss of synchrony suggest altered coordinate regulation of GH release.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.