Abstract

The electrophysiological properties of anterior pituitary somatotropes integrally involve the function of voltage-gated K+ currents. In this study, we have used GH4C1 cell lines to investigate the effect of human GHRH on voltage-gated K+ currents. Because of a clear 'rundown' of the K+ current with classic whole cell recording (WCR) without ATP in pipette solution, nystatin-perforated WCR was the major recording configuration used. Using a low Ca2+ (0.5 mM) bath solution containing Co2+ (1 mM) and TTX (1 microM), GH4 cells predominantly exhibited an outward delayed rectifier K+ current (IK). Local application of growth hormone releasing hormone (GHRH) (100 nM) reversibly reduced the amplitude of the K+ currents (to 83% of control). There was no effect of GHRH on the activation curve of the K+ current and no difference observed using 2.5 mM Ca2+ or low Ca2+ (0.5 mM Ca2++1 mM Co2+) bath solutions. Under the condition of low Ca2+ bath solution, the application of apamin (1 microM) or charybdotoxin (1 microM), two specific blockers of the Ca2+-activated K+ current, did not alter the K+ current or the response to GHRH. This reduction in the K+ current by GHRH was also observed with classic WCR with a pipette solution containing ATP (2 mM). The GHRH-induced reduction in the K+ current was completely abolished by the presence of GDP-beta-s (500 microM) in the pipette solution or by addition of PKC inhibitors, calphostin C (100 nM) and chelerythrine (1 microM), in bath solution. Inhibitor for cAMP-PKA system (Rp-cAMP and H89) did not affect the K+ current response to GHRH. These results suggest that GHRH reduces the voltage-gated K+ current in GH4C1 cells, a response that is mediated by G-proteins and PKC system but not by cAMP-PKA system. The reduction in the K+ current may partially contribute to the GHRH-stimulated growth hormone (GH) secretion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.