Abstract
Background: Whole body vibration (WBV) has been reported to exert growth hormone(GH)-releasing effects in healthy subjects. Despite the potential of WBV to positively affect body composition changes via lipolytic effects, few studies have been performed in obese subjects to date. Methods: This study evaluated the acute effects of WBV alone or in combination with squatting plus external load (WBV+S) on serum GH levels and blood lactate concentrations in 7 severely obese women (age 22 ± 5 years; BMI 39.9 ± 2.9 kg/m<sup>2</sup>). Results: WBV and WBV+S determined a significant GH increase (mean GH peaks 5.1 ± 1.9 ng/ml, p < 0.001 vs. basal, and 6.5 ± 3.7 ng/ml, p < 0.001 vs. basal, respectively), GH peaks occurring immediately after both exercise sessions. No significant differences were observed between GH peaks and GH net incremental area under the curve (nAUC) after both conditions (p = 0.39 and p = 0.53, respectively), the whole pattern of GH responsiveness being comparable among all the subjects. Lactate concentrations increased after both conditions (mean lactate peaks 2.0 ± 0.5 mmol/l, p < 0.05 vs. basal, and 4.5 ± 2.0 mmol/l, p < 0.001 vs. basal, respectively). The lactate response was significantly higher after WBV+S than after WBV (p < 0.05). Baseline GH and GH peak values positively correlated to baseline lactate and lactate peak concentrations in both conditions (R<sup>2</sup> = 0.64, p < 0.001, and R<sup>2</sup> = 0.52, p < 0.05, respectively). Conclusions: WBV alone stimulates GH release and lactate production in severely obese female subjects, with no additive effect when combined with squatting plus external load. Further additional studies are required to verify the chronic effects of WBV exercise on the GH/IGF-1 system, which could represent a potentially effective approach for weight management in obese subjects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.