Abstract

In-flight muscle mass and strength losses are likely exacerbated by low growth hormone (GH) concentrations. Factors associated with exercise may foretell resultant GH levels and thereby help blunt future mass and strength losses. To assess the ability of variables to predict GH variance from resistive exercise done on a flywheel ergometer (FE) designed for in-flight exercise, subjects (N=17) performed three types of workouts on the device. With a randomized design, subjects performed the workouts with the intent to determine if changes in post-exercise GH concentrations are impacted by contractile mode and workload. Body mass, blood lactate (BLa-) concentrations, and peak angular velocity (PAV), average power (AP), and total work (TW) from workouts attempted to predict GH variance. Pre-exercise blood draws, and at 1 and 30 min after workouts, were used to determine GH concentrations. BLa- levels were measured before workouts and at 5 min post-exercise. Delta (8, post-pre) and 30-min post-workout GH levels served as criterion variables. Multivariate regression with an alpha < or = 0.05 yielded the following significant prediction equation: deltaGH = 13.64 - 0.014 (body mass) - 0.607 (post-exercise BLa-) + 0.659 (deltaBLa-) - 0.624(PAV) + 0.653(TW) + 0.147(AP). Univariate correlations show body mass, deltaBLa-, and TW were the best predictors of deltaGH variance. Future research should also attempt to identify additional variables that account for the unexplained GH variance from FE workouts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call