Abstract

Bone marrow transplantation with total body irradiation (BMT/TBI) has adverse effects on growth, growth hormone status and adiposity. We investigated the GH-IGF-I axis in relation to adiposity. Cross-sectional case control study. BMT/TBI survivors (n = 22) and short stature control participants (n = 19), all GH-naïve or off GH treatment >3 months. Auxology, DEXA scans and GH-IGF-I axis investigation: (i) 12-h overnight GH profiles; (ii) insulin tolerance test (ITT); and (iii) IGF-I generation test. auto-deconvolution of GH profile data and comparison of quantitative parameters using ANOVA. Eighty-two percent of BMT/TBI survivors had growth hormone deficiency (GHD) using ITT. GH profile area-under-the-curve (GH-AUC) was reduced in BMT/TBI survivors vs short stature control participants [geometric mean (range) 209 (21-825) vs 428 (64-1400) mcg/l/12 h, respectively, P = 0·007]. GHD was more marked in those who had additional cranial irradiation (CRT) [ITT peak 1·4 (0·2-3·0) vs TBI only 4·1 (1·1-14·8) mcg/l, P = 0·036]. GHD was more marked at the end of growth in BMT/TBI survivors vs short stature control participants (GH-AUC 551 (64-2474) vs 1369 (192-4197) mcg/l/12 h, respectively, P = 0·011) and more prevalent (9/11 vs 1/9, respectively, P = 0·005). GH profile data were consistent with ITT results in 80% of participants. IGF-I generation tests were normal. BMT/TBI survivors still demonstrated lower GH levels after adjustment for adiposity (fat-adjusted mean difference for GH-AUC 90·9 mcg/l/12 h, P = 0·025). GHD was more prevalent in BMT/TBI survivors than expected for the CRT dose in TBI, worsened with time and persisted into adulthood. GHD could not be explained by adiposity. There was no evidence of GH neurosecretory dysfunction or resistance after BMT/TBI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call