Abstract

In ruminants, milk yield can be affected by treatment with growth hormone (rbGH) and/or changes in frequency of milking. Frequent milkings encourage the maintenance of lactation, whereas infrequent milkings result in mammary involution. Our objective was to evaluate the influence of rbGH treatment and milking frequency on mammary gland morphology and milk composition. After adaptation to twice-daily milkings, six Saanen goats in late lactation were milked once daily from one udder-half and thrice-daily from the other udder-half. Concurrently, three of the six goats received daily injections of rbGH. After 23 d of treatment, milking frequency significantly affected milk yield (+8% vs. −26% for thrice- vs. once-daily milking). Additionally, treatments of rbGH increased milk yield from thrice-daily milked udder-halves (+19%), but failed to abate the reduction in milk yield from once-daily milked udder-halves (−31%). Mammary glands were heavier in the frequently milked udder-halves and in GH-treated goats. Based on histological and DNA analysis of mammary tissues, it was determined that milking frequency clearly affected epithelial cell numbers and alveolar diameter, whereas rbGH induced a potential cell hypertrophy and only a tendency to increase and/or maintain the mammary cell number. RNA concentration and kappa casein gene expression were not affected by treatments. In udder-halves milked once-daily, low casein:whey protein ratios, high Na+:K+ ratios, and high somatic cell counts (SCC) were indicative of changes in epithelial permeability, which rbGH treatment facilitated. The present data suggest that milking frequency and exogenous treatments of rbGH use different cellular mechanisms to influence mammary gland morphology and milk production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.