Abstract

The effects of a combination of mild exercise and GH injections on bone were studied in old female rats. Biosynthetic human GH, 2.7 mg/kg/day, was injected s.c. for 73 days. Exercised rats ran 8 m/min on a treadmill for 1 h/day. All rats (age 21 months old) were labeled with a tetracycline injection 56 days and a calcein injection 11 days before killing. The GH injections resulted in an 11-fold increase in femoral middiaphyseal bone formation rate and a 12% increase in cross-sectional area compared with the saline-injected group. The mild exercise doubled the mineralizing surface but did not influence the bone formation rate significantly. The combination of GH injections plus exercise, however, resulted in a further increase of 39% in bone formation rate, primarily at the anterolateral aspects, and an increase of 5% in cross-sectional area compared with the group injected with GH only. The femur ultimate breaking load was increased by 37% and the stiffness by 42% in the group injected with GH compared with the saline-injected group. Exercise alone did not influence the femur mechanical properties. The combination of GH injections plus exercise induced a 4% further increase in ultimate breaking load and 7% further increase in stiffness compared with the group injected with GH alone. The GH injections induced a 117% increase in serum insulin-like growth factor I. The GH-insulin-like growth factor I axis stimulates recruitment of osteoblast precursor cells, resulting in increased bone formation at the periosteal surface. GH injections and mild excercise in combination modulate and increase further the formation and strength of cortical bone in old female rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call