Abstract
In this article we study a class of monoids that includes Garside monoids, and give a simple combinatorial proof of a formula for the formal sum of all elements of the monoid. This leads to a formula for the growth function of the monoid in the homogeneous case, and can also be lifted to a resolution of the monoid algebra. These results are then applied to known monoids related to Coxeter systems: we give the growth function of the Artin-Tits monoids, and do the same for the dual braid monoids. In this last case we show that the monoid algebras of the dual braid monoids of type A and B are Koszul algebras. Nous étudions une classe de monoïdes incluant les monoïdes de Garside, et donnons une preuve combinatoire simple d'une formule pour la somme formelle de leurs éléments. Cela mène à une formule pour la fonction de croissance du monoïde dans le cas homogène, et peut être aussi relevé en une résolution de l'algèbre de monoïdes. Ces résultats sont ensuite appliqués aux monoïdes liés aux systèmes de Coxeter : nous donnons la fonction de croissance des monoïdes d'Artin-Tits ainsi que des monoïdes duaux ; pour ces derniers nous montrons que leur algèbre de monoïde en types A et B est une algèbre de Koszul.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Discrete Mathematics & Theoretical Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.