Abstract

Growth factors, in addition to being mitogenic, may modulate vascular smooth muscle differentiation. We tested whether serum or defined growth factors could regulate thromboxane A2 (TxA2) receptors in cultured rabbit aorta smooth muscle cells. Fetal bovine serum (10%) stimulated cell proliferation and DNA synthesis in subconfluent cell cultures. Binding of the thromboxane A2 agonist [1S-(1 alpha 2 beta(5Z),3 alpha(1E,3S),4 alpha)]-7-[3-(3-hydroxy-4-p- iodophenoxy-1-butenyl)-7-oxabicyclo[2.2.1]heptan-2-yl]-5-hep tenoic acid showed a 41% decrease in TxA2 receptors in cells treated with 10% serum compared with serum-deprived (0.1%) controls. Receptor downregulation by serum was gradually reversible upon serum withdrawal. Compared with serum-deprived cells, those exposed to 10% serum also had diminished TxA2-stimulated phosphatidylinositol hydrolysis. Regulatory actions of serum on TxA2 receptors were distinguished from mitogenic effects with heparin, which prevented cell growth but did not inhibit serum-induced downregulation of TxA2 receptors. Furthermore, low concentrations of platelet-derived growth factor and basic fibroblast growth factor decreased TxA2 receptors without stimulating cell proliferation or DNA synthesis. These observations describe a previously unrecognized regulatory action of growth factors on a vascular smooth muscle vasoconstrictor receptor, an action which is independent of effects on cell proliferation or DNA synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call