Abstract

Recurrent mutational activation of the MAP kinase pathway in plasma cell myeloma implicates growth factor–like signaling responses in the biology of Ab-secreting cells (ASCs). Physiological ASCs survive in niche microenvironments, but how niche signals are propagated and integrated is poorly understood. In this study, we dissect such a response in human ASCs using an in vitro model. Applying time course expression data and parsimonious gene correlation network analysis (PGCNA), a new approach established by our group, we map expression changes that occur during the maturation of proliferating plasmablast to quiescent plasma cell under survival conditions including the potential niche signal TGF-β3. This analysis demonstrates a convergent pattern of differentiation, linking unfolded protein response/endoplasmic reticulum stress to secretory optimization, coordinated with cell cycle exit. TGF-β3 supports ASC survival while having a limited effect on gene expression including upregulation of CXCR4. This is associated with a significant shift in response to SDF1 in ASCs with amplified ERK1/2 activation, growth factor–like immediate early gene regulation and EGR1 protein expression. Similarly, ASCs responding to survival conditions initially induce partially overlapping sets of immediate early genes without sustaining the response. Thus, in human ASCs growth factor–like gene regulation is transiently imposed by niche signals but is not sustained during subsequent survival and maturation.

Highlights

  • The data presented in this paper support the conclusion that TGF-b can act as part of a realized in vitro plasma cell (PC) niche and in this context can mediate cross-talk with the SDF1-CXCR4 pathway

  • We have dissected this response in Ab-secreting cells (ASCs) in detail and identified EGR1 and immediate early gene (IEG) as a proximal point of signal integration upstream of subsequent waves of gene expression

  • By comparing the modular patterns of gene expression induced during cultures supporting PC survival and those following acute SDF1 exposure, we find that growth factor–like gene regulation is separable from sustained gene expression associated with ASC survival/maturation

Read more

Summary

Introduction

Applying time course expression data and parsimonious gene correlation network analysis (PGCNA), a new approach established by our group, we map expression changes that occur during the maturation of proliferating plasmablast to quiescent plasma cell under survival conditions including the potential niche signal TGF-b3.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.