Abstract

Elastin like polypeptides (ELPs) are a class of naturally derived and non-immunogenic biomaterials that are widely used in drug delivery and tissue engineering. ELPs undergo temperature-mediated inverse phase transitioning, which allows them to be purified in a relatively simple manner from bacterial expression hosts. Being able to genetically encode ELPs allows for the incorporation of bioactive peptides thereby functionalizing them. Here we report the synthesis of a biologically active epidermal growth factor-ELP (EGF-ELP) fusion protein that could aid in wound healing. EGF plays a crucial role in wound healing by inducing cell proliferation and migration. The use of exogenous EGF has seen success in the treatment of acute wounds, but has seen relatively minimal success in chronic wounds because the method of delivery does not prevent it from diffusing away from the application site. Our data shows that EGF-ELP retained the biological activity of EGF and the phase transitioning property of ELP. Furthermore, the ability of the EGF-ELP to self-assemble near physiological temperatures could allow for the formation of drug depots at the wound site and minimize diffusion, increasing the bioavailability of EGF and enhancing tissue regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call