Abstract
We previously reported that rat oligodendrocyte progenitors (OLP) express receptors for the pituitary adenylyl cyclase-activating peptide (PACAP) in vivo and in vitro. Addition of PACAP to cultured OLP triggered a potent elevation in intracellular cAMP contents, a dose-dependent stimulation of proliferation, and a delay in myelinogenesis (Lee M, Lelievre V, Zhao P, Torres M, Rodriguez W, Byun JY, Doshi S, Ioffe Y, Gupta G, de los Monteros AE, de Vellis J, Waschek J. Pituitary adenylyl cyclase-activating polypeptide stimulates DNA synthesis but delays maturation of oligodendrocyte progenitors. J Neurosci. 2001 21:3849–59.). In an attempt to understand how PACAP might interact with growth factors known to stimulate OLP proliferation, we investigated PACAP actions on OLP proliferation in the presence of Fibroblast Growth Factor-2 (FGF-2) and PDGF. Multiple PACAP receptor subtype mRNAs and splice variants were detected in these cultures. PACAP by itself potently stimulated OLP proliferation and enhanced the ability of FGF-2 to stimulate DNA synthesis. In contrast, this peptide strongly antagonized the mitogenic effects of PDGF in association with a reduction of PDGFα receptor gene expression. Additionally, we investigated the interaction of PACAP with the morphogenetic factor sonic hedgehog (Shh), which recently was shown to be crucial for oligodendrocyte generation. OLP cultures were found to express mRNAs for both ptc1 (Shh receptor) and gli1 (Shh target gene) and responded to Shh treatment with an increase in proliferation. PACAP antagonized the ability of Shh to stimulate OLP proliferation. Moreover, transcriptional targets of Shh signaling were also reduced by this treatment, suggesting that PACAP directly antagonized Shh signaling. These studies reveal complex in vitro interactions of PACAP with other factors involved in OLP development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.