Abstract

Atmospheric particulate matter (APM), commonly seen and widely excited in environment, appears great enough to influence the biochemical processes in aquatic microorganisms and phytoplankton. Understanding the response of cyanobacteria to various factors is fundamental for eutrophication control. To clarify the response of cyanobacteria to APM, the effects of PM2.5, PM2.5-10, and PM>10 on Microcystis aeruginosa were researched. Variabilities in cell density, chlorophyll a, soluble protein, malondialdehyde, extracellular activity, and kinetic parameters of alkaline phosphatase were evaluated by lab-cultured experiments. Results showed that the PM2.5 had a slight stimulation impact on the growth and enhanced both of the 48- and 72-h extracellular alkaline phosphatase activity (APA), the affinity of alkaline phosphatase for substrate, and the 72-h maximum enzymatic reaction velocity (Vmax). Moreover, the stimulations in extracellular APA and Vmax enhanced with the increasing exposure concentrations. We also found there were no obvious distinctions on the effects of growth and alkaline phosphatase in M. aeruginosa between PM2.5-10 and PM>10 exposure groups. Obviously, inhibitory effects on growth existed in 4.0 and 8.0mg/L PM2.5-10 and 8.0mg/L PM>10 at 120h. Furthermore, PM2.5-10 and PM>10 exerted inhibitory effects on the extracellular APA during the 72-h exposure. Simultaneously, the Vmax was notably inhibited and the affinity of alkaline phosphatase for substrate was more inseparable compared with control in PM2.5-10 and PM>10 treatments. Nevertheless, the inhibitors in extracellular APA and kinetic parameters were unrelated to PM2.5-10 and PM>10 exposure concentrations. Two-way ANOVA results revealed that there were significant interactions between exposure concentration and diameter of APM on the 120-h cell density, soluble protein content, APA, and 72h APA of M. aeruginosa. These results in our study would be meaningful to further researches on relationships between APM deposition and cyanobacterial bloom.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.