Abstract
An alfalfa (Medicago sativa L) biomass energy production system would produce two products. Leaves would be separated from stems to produce a protein feed for livestock while stems would be processed to produce ethanol. Therefore, maximum yields of both leaves and stems are essential for profitability of this biomass production system. Our objective was to evaluate the impact of growth environment (locations, years and plant density) and harvest maturity stage (early bud (4 annual cuts) and late flower (3 annual cuts)) on leaf crude protein and potential ethanol yields for four alfalfa germplasms, two with high forage quality, and two non-lodging biomass types. Potential ethanol yield was greater at late flower compared to early bud, while leaf crude protein concentration was similar at the two harvest maturity stages at both locations. Leaf crude protein yield was greater at the Minnesota (MN) site compared to Wisconsin (WI) site. The two non-lodging biomass germplasms had greater potential ethanol yield compared to the high forage quality cultivars in WI, but no differences among the alfalfa germplasms were found for ethanol yield at MN. In WI, no differences were found among the germplasms for leaf crude protein yield, but the high quality cultivars had greater leaf crude protein yield than the non-lodging germplasms in MN. While germplasm differences were found for leaf crude protein and potential ethanol yields, the environmental influences of harvest date and locations had the greatest impact on these two alfalfa biomass energy products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.