Abstract

An in situ optical absorbance measurement was used to study the growth dynamics of vertically aligned single-walled carbon nanotubes (VA-SWCNTs) synthesized by chemical vapor deposition of ethanol. The growth rate of the VA-SWCNT film was found to decay exponentially from an initial maximum, resulting in an effective growth time of approximately 15 min. Investigation of various growth conditions revealed an optimum pressure at which growth is maximized, and this pressure depends on the growth temperature. Below this optimum pressure the synthesis reaction is first-order, and the rate-limiting step is the arrival of ethanol at the catalyst. We also present a novel method for determining the burning temperature of low-mass materials, which combines the in situ absorbance measurement with controlled oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.