Abstract
Summary Laminated microbial mats are important ecosystem components of perennially ice‐covered Antarctic dry valley lakes. In order to understand better their response to changing environment, we made observations and carried out a manipulation experiment to determine their response to variations in irradiance in Lake Hoare (77°38′ S, 162°53′ E). Ice transparency was the most variable parameter that affected benthic light dose, both spatially and between years. Patterns of lamina accrual corresponded to irradiance history, with laminae that were initiated in high transmission years thicker than those from low transmission years. A shading experiment confirmed that accrual of lamina thickness, calcite precipitation and ash‐free dry mass were determined by irradiance, but photosynthetic biomass and phototrophic species composition were less affected. Buried laminae decomposed only slowly over time, with potentially viable phototrophs many laminae down into the microbial mat. Decay rate increased only slightly with shading. We conclude that the microbial mats in Lake Hoare are characterised by remarkable stability, with slow accumulation rates and turnover of biomass over time. Photosynthetic biomass and species composition appeared to be stable across long time periods, with interannual variation in lamination pattern due to differential accumulation of extracellular polysaccharide and representing the visible expression of annual growth conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.