Abstract

The electron spin dynamics is studied by time-resolved Kerr rotation in GaAs/AlGaAs quantum wells embedded in NIP structures grown on (111)A or (111)B-oriented substrates. In both cases the spin lifetimes are significantly increased by applying an external electric field, but this field has to point along the growth direction for structures grown on (111)A and opposite to it for the ones grown on (111)B. This extended electron spin lifetime is the result of the suppression of the D’yakonov-Perel spin relaxation mechanism [Sov. Phys. Solid State 13, 3023 (1972)] due to the cancellation effect of the internal Dresselhaus term [Phys. Rev. 100, 580 (1955)] with the external electric field induced Rashba one [J. Phys. C 17, 6039 (1984)], both governing the conduction band spin-orbit splitting. These results demonstrate the key role played by the growth direction in the design of spintronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.