Abstract

Kales (Brassica oleracea convar acephala) are fast-growing, nutritious leafy vegetables ideal for year-round indoor farming. However, selection of best cultivars for growth under artificial lighting necessitates a deeper understanding of leaf metabolism in different kale types. Here we examined a curly leaved cultivar Half Tall and a lacinato type cultivar Black Magic under moderate growth light (130 µmol photons m-1s-1/22°C) and high light (800 µmol photons m-1s-1/26°C) conditions. These conditions induced genotype-dependent differences in nutritionally important metabolites, especially anthocyanins and glucosinolates (GSLs), in the kale cultivars. In the pale green Half Tall, growth under high light conditions did not induce changes in either pigmentation or total GSL content. In contrast, the purple pigmentation of Black Magic intensified due to increased anthocyanin accumulation. Black Magic showed reduced amounts of indole GSLs and increased amounts of aliphatic GSLs under high light conditions, with notable cultivar-specific adjustments in individual GSL species. Correlation analysis of metabolite profiles suggested cultivar-specific metabolic interplay between serine biosynthesis and the production of indole GSLs. RNA sequencing identified candidate genes encoding metabolic enzymes and regulatory components behind anthocyanin and GSL biosynthesis. These findings improve the understanding of leaf metabolism and its effects on the nutritional quality of kale cultivars.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call