Abstract

The objective of this study is to develop kinetic models based on batch experiments describing the growth, CO(2) consumption, and H(2) production of Anabaena variabilis ATCC 29413-U(TM) as functions of irradiance and CO(2) concentration. A parametric experimental study is performed for irradiances from 1120 to 16100 lux and for initial CO(2) mole fractions from 0.03 to 0.20 in argon at pH 7.0 +/- 0.4 with nitrate in the medium. Kinetic models are successfully developed based on the Monod model and on a novel scaling analysis employing the CO(2) consumption half-time as the time scale. Monod models predict the growth, CO(2) consumption and O(2) production within 30%. Moreover, the CO(2) consumption half-time is an appropriate time scale for analysing all experimental data. In addition, the optimum initial CO(2) mole fraction is 0.05 for maximum growth and CO(2) consumption rates. Finally, the saturation irradiance is determined to be 5170 lux for CO(2) consumption and growth whereas, the maximum H(2) production rate occurs around 10,000 lux. The study presents kinetic models predicting the growth, CO(2) consumption and H(2) production of A. variabilis. The experimental and scaling analysis methods can be generalized to other micro-organisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.