Abstract

The fabrication of Si nanowires has been demonstrated using a combination of template-directed synthesis and vapor–liquid–solid (VLS) growth. The use of nanoporous alumina membranes for VLS growth provides control over nanowire diameter while also enabling the production of single crystal material. An investigation of the growth characteristics of Si nanowires over a temperature range from 400°C to 600°C, and over a SiH 4 partial pressure range from 0.13 to 0.65 Torr was carried out. The length of Si nanowires was found to be linearly dependent on growth time over this range of conditions. The nanowire growth rate increased from 0.068 μm/min at 400°C to 0.52 μm/min at 500°C at a constant SiH 4 partial pressure of 0.65 Torr. At temperatures greater than 500°C, Si deposited on the top surface and pore walls of the membrane thereby reducing the nanowire growth rate. The growth rate versus temperature data was used to calculate an activation energy of 22 kcal/mol for the nanowire growth process. This activation energy is believed to be associated with the decomposition of SiH 4 on the Au–Si liquid surface, which is considered to be the rate-determining step in the VLS growth process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.