Abstract

The continuous device scaling of dynamic random access memories has been increasing demands for the development of dielectric materials with high dielectric constants and low leakage currents. In this study, we developed MgO thin films through atomic layer deposition (ALD) using bis(ethylcyclopentadienyl)magnesium combined with two different reactants, H2O or O2 plasma, and compared the physical and chemical characteristics of MgO thin films produced by thermal ALD (Th-ALD) and plasma-enhanced ALD (PEALD). The films were deposited in a temperature range of 200–400 °C, and self-limited surface reactions were observed for both ALD processes. Th-ALD MgO films showed the oxygen deficient composition, while more stoichiometric MgO films were achieved by PEALD process. To evaluate the electrical characteristics of the MgO films, the metal–insulator–metal capacitors were fabricated. The electrical characteristics of the MgO film, such as the dielectric constant and leakage current, were compared according to the reactant type. The bulk-limited leakage current conduction mechanisms of the Th-ALD and PEALD MgO thin films were also investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call