Abstract
An in vitro chemostat system was used to study the growth and the expression of iron-regulated outer-membrane proteins (IROMPs) by biofilm cells of Pseudomonas aeruginosa cultivated under conditions of iron limitation. The population of the planktonic cells decreased when the dilution rate was increased. At a dilution rate of 0.05 h-1, the populations of planktonic cells of both mucoid and nonmucoid P. aeruginosa were 3 x 10(9) cells/mL. This value dropped to 5 x 10(6) cells/mL when the dilution rate was increased to 1.0 h-1. The reverse was observed for the biofilm cells. The number of biofilm cells colonising the silicone tubing increased when the dilution rate was increased. The number of biofilm cells of the mucoid strain at steady state was 2 x 10(8) cells/cm (length) when the dilution rate was fixed at 0.05 h-1. The figure increased to 8 x 10(9) cells/cm when the dilution rate was increased to 1.0 h-1. The population of biofilm cells of the nonmucoid strain was 9 x 10(7) cells/cm (length) when the dilution rate was 0.05 h-1. It increased to 2 x 10(9) cells/cm when the dilution rate was set at 1.0 h-1. The expression of IROMPs was induced in the biofilm cells of both mucoid and nonmucoid strains when the dilution rates were 0.05 and 0.2 h-1. IROMPs were reduced but still detectable at the dilution rate of 0.5 h-1. However, the expression of IROMPs was repressed when the dilution rate was increased to 1.0 h-1. The data suggest that the biofilm cells of P. aeruginosa switch on the expression of IROMPs to assist iron acquisition when the dilution rate used for the chemostat run is below 0.5 h-1. The high affinity iron uptake system is not required by the biofilm cells when the dilution rate is increased because the trace amount of iron present in the chemostat is sufficient for the growth of adherent biofilm cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.