Abstract

Bottom-up self-aligned area-selective deposition (ASD) plays an important role in patterning of advanced electronic devices. Specifically, ASD of organic materials can be utilized for nucleation inhibitors, sacrificial layers, and air-gap materials for next-generation nanoscale processing. This work introduces fundamental growth behavior of various conjugated polymers including polypyrrole, polythiophene, and polyaniline via oxidative molecular layer deposition and chemical vapor deposition. Effects of process parameters on film properties are described, and ASD behavior of different polymers are quantitatively characterized. These findings expand fundamental understanding of conjugated polymer deposition and provide new perspectives for ASD of organic thin films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call