Abstract
The incorporation of foreign elements into ZnO nanostructures is of significant interest for tuning the structure and optical and electrical properties in nanoscale optoelectronic devices. In this study, Ga-doped 1-D ZnO nanorods were synthesized using a hydrothermal route, in which the doping content of Ga was varied from 0% to 10%. The pn heterojunction diodes based on the n-type Ga-doped ZnO nanorod/p-type Si substrates were constructed, and the effect of the Ga doping on the morphology, chemical bonding structure, and optical properties of the ZnO nanorods was systematically investigated as well as the diode performance. With increasing Ga content, the average diameter of the ZnO nanorods was increased, whereas the amount of oxygen vacancies was reduced. In addition, the Ga-doped ZnO nanorod/p-Si diodes showed a well-defined rectifying behavior in the I-V characteristics and an improvement in the electrical conductivity (diode performance) by the Ga doping, which was attributed to the increased charge carrier (electron) concentration and the reduced defect states in the nanorods by incorporating Ga. The results suggest that Ga doping is an effective way to tailor the morphology, optical, electronic, and electrical properties of ZnO nanorods for various applications such as field-effect transistors (FETs), light-emitting diodes (LEDs), and laser diodes (LDs).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.