Abstract

BackgroundPlant growth is plastic, able to rapidly adjust to fluctuation in environmental conditions such as drought and salinity. Due to long-term irrigation use in agricultural systems, soil salinity is increasing; consequently crop yield is adversely affected. It is known that salt tolerance is a quantitative trait supported by genes affecting ion homeostasis, ion transport, ion compartmentalization and ion selectivity. Less is known about pathways connecting NaCl and cell proliferation and cell death. Plant growth and cell proliferation is, in part, controlled by the concerted activity of the heterotrimeric G-protein complex with glucose. Prompted by the abundance of stress-related, functional annotations of genes encoding proteins that interact with core components of the Arabidopsis heterotrimeric G protein complex (AtRGS1, AtGPA1, AGB1, and AGG), we tested the hypothesis that G proteins modulate plant growth under salt stress.ResultsNa+ activates G signaling as quantitated by internalization of Arabidopsis Regulator of G Signaling protein 1 (AtRGS1). Despite being components of a singular signaling complex loss of the Gβ subunit (agb1-2 mutant) conferred accelerated senescence and aborted development in the presence of Na+, whereas loss of AtRGS1 (rgs1-2 mutant) conferred Na+ tolerance evident as less attenuated shoot growth and senescence. Site-directed changes in the Gα and Gβγ protein-protein interface were made to disrupt the interaction between the Gα and Gβγ subunits in order to elevate free activated Gα subunit and free Gβγ dimer at the plasma membrane. These mutations conferred sodium tolerance. Glucose in the growth media improved the survival under salt stress in Col but not in agb1-2 or rgs1-2 mutants.ConclusionsThese results demonstrate a direct role for G-protein signaling in the plant growth response to salt stress. The contrasting phenotypes of agb1-2 and rgs1-2 mutants suggest that G-proteins balance growth and death under salt stress. The phenotypes of the loss-of-function mutations prompted the model that during salt stress, G activation promotes growth and attenuates senescence probably by releasing ER stress.

Highlights

  • IntroductionAble to rapidly adjust to fluctuation in environmental conditions such as drought and salinity

  • Plant growth is plastic, able to rapidly adjust to fluctuation in environmental conditions such as drought and salinity

  • The G protein interactome suggests a role for G proteins in saline stress Additional file 1: Data Set S1, shows that the “response to abiotic stimulus”, “response to stress”, and “metabolic process” are the top 5 most enriched Gene ontology (GO) terms for G protein interactors

Read more

Summary

Introduction

Able to rapidly adjust to fluctuation in environmental conditions such as drought and salinity. Site-directed changes in the Gα and Gβγ protein-protein interface were made to disrupt the interaction between the Gα and Gβγ subunits in order to elevate free activated Gα subunit and free Gβγ dimer at the plasma membrane. The increased concentration of cytoplasmic sodium disrupts K+ homeostasis, affects general trans-membrane transport, and competes with Mg2+ at the active site of many different enzymes, impairing metabolism [4,8,9] manifesting as reduced cell division/ expansion and increased senescence

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.