Abstract

Abstract. The global uptake of CO2 in photosynthesis is about 120 gigatons (Gt) of carbon per year. Virtually all passes through one enzyme, ribulose bisphosphate carboxylase/oxygenase (rubisco), which initiates both the photosynthetic carbon reduction, and photorespiratory carbon oxidation, cycles. Both CO2 and O2 are substrates; CO2 also activates the enzyme. In C3 plants, rubisco has a low catalytic activity, operates below its Km (CO2), and is inhibited by O2. Consequently, increases in the CO2/O2 ratio stimulate C3 photosynthesis and inhibit photorespiration. CO2 enrichment usually enhances the productivity of C3 plants, but the effect is marginal in C4 species. It also causes acclimation in various ways: anatomically, morphologically, physiologically or biochemically. So, CO2 exerts secondary effects in growth regulation, probably at the molecular level, that are not predictable from its primary biochemical role in carboxylation. After an initial increase with CO2 enrichment, net photosynthesis often declines. This is a common acclimation phenomenon, less so in field studies, that is ultimately mediated by a decline in rubisco activity, though the RuBP/Pi‐regeneration capacities of the plant may play a role. The decline is due to decreased rubisco protein, activation state, and/or specific activity, and it maintains the rubisco fixation and RuBP/Pi regeneration capacities in balance. Carbohydrate accumulation is sometimes associated with reduced net photosynthesis, possibly causing feedback inhibition of the RuBP/Piregeneration capacities, or chloroplast disruption. As exemplified by field‐grown soybeans and salt marsh species, a reduction in net photosynthesis and rubisco activity is not inevitable under CO2 enrichment. Strong sinks or rapid translocation may avoid such acclimation responses. Over geological time, aquatic autotrophs and terrestrial C4 and CAM plants have genetically adapted to a decline in the external CO2/O2 ratio, by the development of mechanisms to concentrate CO2 internally; thus circumventing O2 inhibition of rubisco. Here rubisco affinity for CO2 is less, but its catalytic activity is greater, a situation compatible with a high‐CO2 internal environment. In aquatic autotrophs, the CO2 concentrating mechanisms acclimate to the external CO2, being suppressed at high‐CO2. It is unclear, whether a doubling in atmospheric CO2 will be sufficient to cause a de‐adaptive trend in the rubisco kinetics of future C3 plants, producing higher catalytic activities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call