Abstract

Abstract Pseudechinus magellanicus is an ecologically important and small sea urchin in coastal and nearshore habitats off southern South America. We provide the first growth assessment for the species using tag (calcein) and recapture procedures in central Patagonia (Argentina). The individual growth rate of P. magellanicus ranged 0.05–1.3 mm year−1. The Brody–Bertalanffy and Richards growth models provided asymptotic maximum diameters of 29.89 and 26.01 mm, respectively. Both models yielded low values for the growth constant (k), with 0.046 (Brody–Bertalanffy) and 0.062 (Richards). Maximum instantaneous growth rate was estimated at 1.36 mm year−1 for the Brody–Bertalanffy model, and 2.69 mm year−1 for the Richards model. Model selection (corrected Akaike information criterion) showed a slight better fit for the Brody–Bertalanffy growth model compared to the Richards model. A significant variability in growth was observed within the studied population, which can be attributed to genetic factors and micro-environmental effects. P. magellanicus displays a combination of slow growth and small body size, with the lowest recorded growth performance index (θ = 3.72) recorded so far in sea urchins. The species has a long lifespan, with the most common adult sizes estimated to range from 15 to 21 years according to the Brody–Bertalanffy model. Due to the broad geographic distribution and occupation of contrasting habitats, further studies are necessary to explore growth of P. magellanicus under different environmental conditions and/or along a bathymetric gradient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call