Abstract

Nitrogen (N) is an essential element for producing optimum crop yields, but negative responses to high N supply are commonly reported in sweetpotato (Ipomoea batatas) production. This study assessed contrasting responses of sweetpotato yield as a result of N application rates of 0, 30, 60, 90, 130, 160 and 230 kg ha−1 in a glasshouse trial, and rates of 0, 50, 100, 150, 200 and 250 kg ha−1, equivalent to 160, 210, 260, 310, 360 and 410 kg ha−1 when soil N supply is included. The glasshouse-grown sweetpotato produced a maximum number and dry-biomass of storage roots, aboveground biomass and leaf area at 130 kg N ha−1, while leaf N concentration peaked at 90 kg N ha−1. Further increasing N application to 230 kg ha−1 did not result in significant change in any of these attributes. In field-grown sweetpotato, leaf and storage root N concentrations increased with increasing N supply. Although N supply had no effect on the number of storage roots, total yield peaked at 260 kg ha−1. Further increase of N supply reduced the total yield by up to 14% of the maximum yield. With increasing N supply, the glasshouse-grown sweetpotato yield linearly increased with leaf area; the arrangement of the trial permitting light interception to exceed the pot surface area. The yield reduction in field-grown plants was attributed to excess growth of aboveground parts, beyond that needed for efficient light capture. Respirational demand of the aboveground growth occurred at the expense of storage root yields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.