Abstract

In this paper, we describe the growth and potential application of metal nanocrystal assemblies on metal-catalyzed, CVD-grown silicon nanowires (SiNWs). The nanowires are decorated by chemical assembly of closely spaced (1–5 nm) Ag (30–100 nm diameter) and Au (5–25 nm diameter) nanocrystals formed from solutions of AgNO3 and NaAuCl4·2H2O, respectively. The formation and growth of metal nanocrystals is believed to involve the galvanic reduction of metal ions from solution and the subsequent oxidation of available Si-hydride sites on the surfaces of the nanowires. A native oxide layer suppresses formation of metal nanocrystals; adding HF to the ionic solutions significantly increases the density of nanocrystals on the surfaces of the nanowires. The nanocrystals coating the nanowires were characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, and X-ray diffraction. Ag nanocrystals on the nanowires afford sensitive detection of Rhodamine 6G (R6G) molecules in the 100 picomolar–micromolar range by surface enhanced Raman spectroscopy. In addition, Au nanocrystals formed on selected surfaces of a substrate of arbitrary shape can serve as effective nuclei for localized nanowire growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call